Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ben-Yong Lou, Da-Qiang Yuan, Ben-Lai Wu and Mao-Chun Hong*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: hmc@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=130 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.045$
$w R$ factor $=0.113$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mu-4,4^{\prime}$-Bipyridine-bis[aqua(N-salicylideneaspartato)copper(II)]

The title complex has a binuclear structure, formulated as $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$. It is a centrosymmetric molecule with both D - and L -sasp ligands (sasp is the N salicylideneaspartic acid anion) coordinated to the $\mathrm{Cu}^{\mathrm{II}}$ centers which are bridged by $4,4^{\prime}$-bipyridine. Intermolecular hydrogen bonds give rise to a three-dimensional supramolecular structure.

Comment

Copper(II)-amino acid complexes and their derivatives have attracted considerable attention due to their biochemical and pharmacological properties (Sarkar, 1999; Deschamps et al., 2003). Whilst investigating the preparation of Schiff base copper complexes with amino acid ligands, the title binuclear compound, (I), was obtained.

(I)

The title compound has a centrosymmetric binuclear molecule in which the sasp (sasp is N-salicylideneaspartate) anion acts as a tridentate ligand chelating the $\mathrm{Cu}^{\mathrm{II}}$ atom

Figure 1
The structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level. The suffix A indicates the symmetry code (2-x, 1-y, 1-z).

Received 8 October 2004
Accepted 24 November 2004
Online 30 November 2004

Figure 2
The three-dimensional packing of the complex. Dashed lines indicate hydrogen bonds.
through the phenolate O atom, an N atom and a carboxylic acid O atom. 4, 4^{\prime}-Bipyridine bridges two $\mathrm{Cu}^{\mathrm{II}}$ centers and apical water molecules complete the nearly square-pyramidal geometry of the $\mathrm{Cu}^{\text {II }}$ centers. The binuclear structure is shown Fig. 1 and selected distances and angles are listed in Table 1.

The binuclear molecules interact through intermolecular hydrogen bonds (Table 2), giving a three-dimensional supramolecular structure, as shown in Fig. 2.

Experimental

To an aqueous solution (10 ml) of d, L-aspartic acid $(0.067 \mathrm{~g}$, $0.50 \mathrm{mmol})$ and $\mathrm{NaOH}(0.040 \mathrm{~g}, 1.00 \mathrm{mmol})$, salicylaldehyde (0.061 g , 0.50 mmol) in ethanol (5 ml) was added slowly. The solution was stirred for 30 min and then $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.120 \mathrm{~g}, 0.50 \mathrm{mmol})$ in water (5 ml) was added. To the resulting solution, $4,4^{\prime}$-bipyridine $(0.040 \mathrm{~g}, 0.25 \mathrm{mmol})$ in ethanol (5 ml) was added slowly. After filtration, the solution was allowed to stand in air and after several days, blue crystals were obtained in 40% yield.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)-\right.} \\
& \left.\quad\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \\
& M_{r}=789.68 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=10.2015(17) \AA \\
& b=10.6210(13) \AA \\
& c=14.872(2) \AA \\
& \beta=106.838(8)^{\circ} \\
& V=1542.3(4) \AA^{3} \\
& Z=2
\end{aligned}
$$

Data collection

Rigaku Mercury CCD	3516 independent reflections
\quad diffractometer	3004 reflections with $I>2 \sigma(I)$
ω scans	$R_{\operatorname{int}}=0.041$
Absorption correction: multi-scan	$\theta_{\max }=27.5^{\circ}$
\quad (CrystalClear; Rigaku, 2000)	$h=-11 \rightarrow 13$
$T_{\min }=0.611, T_{\max }=0.890$	$k=-13 \rightarrow 13$
11473 measured reflections	$l=-19 \rightarrow 14$

$D_{x}=1.700 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3383 reflections
$\theta=3.4-27.5^{\circ}$
$\mu=1.45 \mathrm{~mm}^{-1}$
$T=130$ (2) K
Prism, blue
$0.25 \times 0.15 \times 0.08 \mathrm{~mm}$

3516 independent reflections
reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=27.5^{\circ}$
$k=-13 \rightarrow 13$
$l=-19 \rightarrow 14$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.054 P)^{2}\right. \\
& \quad+1.5366 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.73 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.69 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.113$
$S=1.09$
3516 reflections
236 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 5$	$1.900(2)$	$\mathrm{Cu} 1-\mathrm{O} 1$	$2.014(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.938(2)$	$\mathrm{Cu} 1-\mathrm{O} 6$	$2.335(3)$
$\mathrm{Cu} 1-\mathrm{N} 8$	$1.997(2)$		
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{N} 1$	$93.85(9)$	$\mathrm{N} 8-\mathrm{Cu} 1-\mathrm{O} 1$	$91.20(9)$
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{N} 8$	$90.84(9)$	$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 6$	$99.55(10)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 8$	$168.76(10)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 6$	$100.69(10)$
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 1$	$169.16(9)$	$\mathrm{N} 8-\mathrm{Cu} 1-\mathrm{O} 6$	$88.58(10)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$82.34(9)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 6$	$91.15(9)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.84	1.86	$2.661(3)$	160
O6 $^{\mathrm{H}} 6 A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.67(4)$	$2.09(4)$	$2.760(3)$	$173(5)$
O6-H6 $^{\mathrm{O}} \cdots \mathrm{O}^{\mathrm{ii}}$	$0.94(5)$	$1.90(5)$	$2.812(3)$	$160(4)$

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$.
The H atoms of water molecules and the H atom bound to C 5 were located in difference Fourier maps; the former were refined freely. Other H atoms were positioned geometrically and, together with H5, were constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom).

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of China and the Natural Science Foundation of Fujian Province.

References

Bruker (1997). SHELXTL. Version 5.11. Bruker AXS Inc., Madison, Wisconsin, USA.
Deschamps, P., Kulkarni, P. P. \& Sarkar, B. (2003). Inorg. Chem. 42, 7366-7368.
Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan. Sarkar, B. (1999). Chem. Rev. 99, 2535-2544.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

